9 resultados para Cerebral edema

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies have shown that sulforaphane, a naturally occurring compound that is found in cruciferous vegetables, offers cellular protection in several models of brain injury. When administered following traumatic brain injury (TBI), sulforaphane has been demonstrated to attenuate blood-brain barrier permeability and reduce cerebral edema. These beneficial effects of sulforaphane have been shown to involve induction of a group of cytoprotective, Nrf2-driven genes, whose protein products include free radical scavenging and detoxifying enzymes. However, the influence of sulforaphane on post-injury cognitive deficits has not been examined. In this study, we examined if sulforaphane, when administered following cortical impact injury, can improve the performance of rats tested in hippocampal- and prefrontal cortex-dependent tasks. Our results indicate that sulforaphane treatment improves performance in the Morris water maze task (as indicated by decreased latencies during learning and platform localization during a probe trial) and reduces working memory dysfunction (tested using the delayed match-to-place task). These behavioral improvements were only observed when the treatment was initiated 1h, but not 6h, post-injury. These studies support the use of sulforaphane in the treatment of TBI, and extend the previously observed protective effects to include enhanced cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hydrostatic intestinal edema initiates a signal transduction cascade that results in smooth muscle contractile dysfunction. Given the rapid and concurrent alterations in the mechanical properties of edematous intestine observed with the development of edema, we hypothesize that mechanical forces may serve as a stimulus for the activation of certain signaling cascades. We sought to examine whether isolated similar magnitude mechanical forces induced the same signal transduction cascades associated with edema. METHODS: The distal intestine from adult male Sprague Dawley rats was stretched longitudinally for 2 h to 123% its original length, which correlates with the interstitial stress found with edema. We compared wet-to-dry ratios, myeloperoxidase activity, nuclear signal transduction and activator of transcription (STAT)-3 and nuclear factor (NF)-kappa B DNA binding, STAT-3 phosphorylation, myosin light chain phosphorylation, baseline and maximally stimulated intestinal contractile strength, and inducible nitric oxide synthase (iNOS) and sodium hydrogen exchanger 1-3 messenger RNA (mRNA) in stretched and adjacent control segments of intestine. RESULTS: Mechanical stretch did not induce intestinal edema or an increase in myeloperoxidase activity. Nuclear STAT-3 DNA binding, STAT-3 phosphorylation, and nuclear NF-kappa B DNA binding were significantly increased in stretched seromuscular samples. Increased expression of sodium hydrogen exchanger 1 was found but not an increase in iNOS expression. Myosin light chain phosphorylation was significantly decreased in stretched intestine as was baseline and maximally stimulated intestinal contractile strength. CONCLUSION: Intestinal stretch, in the absence of edema/inflammatory/ischemic changes, leads to the activation of signaling pathways known to be altered in intestinal edema. Edema may initiate a mechanotransductive cascade that is responsible for the subsequent activation of various signaling cascades known to induce contractile dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheoencephalogram (REG) is the change in the electrical impedance of the head that occurs with each heart beat. Without knowledge of the relationship between cerebral blood flow (Q) and the REG, the utility of the REG in the study of the cerebral vasculature is greatly limited. The hypothesis is that the relationship between the REG and Q when venous outflow is nonpulsatile is^ (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI)^ where K is a proportionality constant and Q is the mean Q.^ Pulsatile CBF was measured in the goat via a chronically implanted electromagnetic flowmeter. Electrodes were implanted in the ipsilateral cerebral hemisphere, and the REG was measured with a two electrode impedance plethysmograph. Measurements were made with the animal's head elevated so that venous flow pulsations were not transmitted from the heart to the cerebral veins. Measurements were made under conditions of varied cerebrovascular resistance induced by altering blood CO(,2) levels and under conditions of high and low cerebrospinal fluid pressures. There was a high correlation (r = .922-.983) between the REG calculated from the hypothesized relationship and the measured REG under all conditions.^ Other investigators have proposed that the REG results from linear changes in blood resistivity proportional to blood velocity. There was little to no correlation between the measured REG and the flow velocity ( r = .022-.306). A linear combination of the flow velocity and the hypothesized relationship between the REG and Q did not predict the measured REG significantly better than the hypothesized relationship alone in 37 out of 50 experiments.^ Jacquy proposed an index (F) of cerebral blood flow calculated from amplitudes and latencies of the REG. The F index was highly correlated (r = .929) with measured cerebral blood flow under control and hypercapnic conditions, but was not as highly correlated under conditions of hypocapnia (r = .723) and arterial hypotension (r = .681).^ The results demonstrate that the REG is not determined by mean cerebral blood flow, but by the pulsatile flow only. Thus, the utility of the REG in the determination of mean cerebral blood flow is limited. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of nosocomial pneumonia was monitored in 96 head-trauma patients requiring mechanical ventilation for up to 10 days. Pneumonia occurred in 28 patients (29.2%) or 53.9 cases per 1,000 admission days. The incidence of nosocomial pneumonia was negatively correlated with cerebral oxygen metabolic rate (CMRO$\sb2$) measured during the first five days. The relative risk of nosocomial pneumonia for patients with CMRO$\sb2$ less than 0.6 umol/gm/min is 2.08 (1.09$-$3.98) times those patients with CMRO$\sb2$ greater than 0.6 umol/gm/min. The association between cerebral oxygen metabolic rate and nosocomial pneumonia was not affected by adjustment of potential confounding factors including age, cimetidine and other infections. These findings provide evidences underlying the CNS-immune system interaction. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is based on secondary analyses of data collected in Starr County, Texas from 1981 till 1991 to determine the prevalence, incidence and risk factors for macular edema in Hispanics with non-insulin-dependent diabetes in Starr County, Texas. Two studies were conducted. The first study examined the prevalence of macular edema in this population. Of the 310 diabetics that were included in the study 22 had macular edema. Of these 22 individuals 9 had clinically significant macular edema. Fasting blood glucose was found to be significantly associated with macular edema. For each 10 mg/dl increase in fasting blood glucose there was a 1.07 probability of an increase in the risk of having macular edema. Individuals with fasting blood glucose $\ge$200 mg/dl were found to be more than three times at risk of having macular edema compared to those with fasting blood glucose $<$200 mg/dl.^ In the second study the incidence and the risk factors that could cause macular edema in this Hispanic population were examined. 240 Hispanics with non-insulin-dependent diabetes mellitus and without macular edema were followed for 1223 person-years. During the follow-up period 27 individuals developed macular edema (2.21/100 person-years). High fasting blood glucose and glycosylated hemoglobin were found to be strong and independent risk factors for macular edema. Participants taking insulin were 3.9 times more at risk of developing macular edema compared to those not taking insulin. Systolic blood pressure was significantly related to macular edema, where each 10 mmHg increase in systolic blood pressure was associated with a 1.3 increase in the risk of macular edema.^ In summary, this study suggests that hyperglycemia is the main underlying factor for retinal pathological changes in this diabetic population, and that macular edema probably is not the result of sudden change in the blood glucose level. It also determined that changes in blood pressure, particularly systolic blood pressure, could trigger the development of macular edema.^ Based on the prevalence reported in this study, it is estimated that 35,500 Hispanic diabetics in the US have macular edema. This imposes a major public health challenge particularly in areas with high concentration of Mexican Americans. It also highlights the importance of public health measures directed to Mexican Americans such as health education, improved access to medical care, and periodic and careful ophthalmologic examination by ophthalmologists knowledgeable and experienced in the management of diabetic macular edema. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH--the acid-base index (ABI)--concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ($\sp{14}$C) 2-deoxyglucose and ($\sp{14}$C) dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices. Hemispheres ipsilateral to tamponade-induced middle cerebral occlusion showed areas of normal, depressed and elevated glucose metabolic rate (as defined by an interhemispheric asymmetry index) after two hours of ischemia. Regions of normal glucose metabolic rate showed normal ABI (pH $\pm$ SD = 6.97 $\pm$ 0.09), regions of depressed lCMRglc showed severe acidosis (6.69 $\pm$ 0.14), and regions of elevated lCMRglc showed moderate acidosis (6.88 $\pm$ 0.10), all significantly different at the.00125 level as shown by analysis of variance. Moderate acidosis in regions of increased lCMRglc suggests that anaerobic glycolysis causes excess protons to be generated by the uncoupling of ATP synthesis and hydrolysis. ^